Ver.1.2 (11062-15:30)
記事の引用・転載(二次使用)は自由ですが、末尾の注意書きもご覧下さい。
低線量被ばくの発がんリスクに関して、議論が続いています。一つの鍵となりうる2003年に米科学アカデミー紀要に掲載された論文に関し、解説を寄稿して頂きましたので掲載致します。
調 麻佐志(しらべ・まさし)准教授
東京工業大学 大学院理工学研究科 工学基礎科学講座(科学計量学)
1. はじめに
ここに紹介した論文注1は、2003年11月の『米国科学アカデミー紀要(通称:PNAS)』に掲載された論文です。
この中では、現在我が国で最も注目されている問題の一つ、「低線量被ばくの発がんリスクへの影響」について、多くの研究を比較しながら議論が行われています。出版後、多数の引用(300超)がなされ、しかも、(私に理解できる範囲では)極度に否定的な反論はないので、現時点では内容の科学的妥当性は損なわれていないと判断しました注2。
この論文が掲載された学術誌『PNAS』は、多くの方々が名前を聞いたことがある『Nature』や『Science』に比べると一般の知名度では劣りますが、様々な専門分野の学術論文が掲載される学術誌の中では、この二大巨頭に準じる権威が認められている学術誌です。
もちろん、掲載された学術誌に権威があるからといって、当該論文の内容が正しいとは限りません。しかし、それだけ多くの科学者から注目されやすく、内容には批判的な目が向けられる機会が多い中で、ある意味生き残っている論文であることから、私は現時点での専門家の間での信ぴょう性は高いと受け止めております。
この論文は科学論文ですので専門知識がなければ読みにくいところは多々あると思いますが、要求される専門知識は少なめで、議論もシンプルです(門外漢の私が読んでも理解できる程度です)。
しかも、原論文の英語は比較的わかり易いと思われます。詳しい内容が気になる方は、原論文に直接あたっていただければと思います。
論文紹介(要旨の翻訳)
"低線量被ばくによる がんリスク:私たちが確かにわかっていることは何かを評価する"
原題:Cancer risks attributable to low doses of ionizing radiation: Assessing what we really know
著者:David J. Brenner(米国コロンビア大学)他
書誌情報:PNAS November 25, 2003 vol. 100 no. 24 13761-13766
http://www.pnas.org/content/100/24/13761
【要旨(筆者による日本語訳)】
高レベルの放射線被ばくは、発がんを含む、しかし、がんに限らない有害な影響を疑いなくもたらす。低線量被ばくに関してはずっと明確でないとはいえ、低線量被ばくのリスクは、がん検診、原子力発電の将来、職業的な放射線被ばく、頻繁に航空機を利用する乗客のリスク、有人宇宙探査、核テロリズムといった幅広い問題と関連しており社会的に重要である。私たちは、低線量被曝のリスクを定量することの難しさについてレビューを行い、二つの問題に取り組んだ。第一の問題は、ヒトの発がんリスクの増加について良い証拠が得られるx線あるいはγ線被ばくの最低値はいくつか?という問いである。疫学的データは、急性(短期)被ばくで約10〜50mSv、長期被ばくで約50〜100mSvをその最低値の範囲として示す。第二の問題は、さらに低い線量の被ばくによるがんのリスクを推定して評価するのに最適な手法は何か?というものである。実験的な根拠のある、定量的かつ生物物理学的な議論で支持され得るものとしては、中レベルから極低レベルの被ばくの発がんリスクの定量には線形推定が最も適切な手法であるようだ。この線形仮説は必ずしも最も保守的なアプローチなわけではない。また、いくつかの放射線による発がんリスクを過小評価し、またいくつかを過大評価する可能性が高い。
2. この論文が指摘したこと、およびその意味について
2−1.論文が指摘したこと
なんらかの要因について、それがヒトの体に与える影響が明確でないとき(とくに影響の発生の仕方が大きなロシアンルーレットのようにランダムな場合、その影響を確率的影響と呼びます)、その要因が健康に与える影響(端的な例は病気に罹ることですが、逆に良い影響も含みます)を科学的に分析するのに、疫学と呼ばれる科学の専門分野の様々なアプローチが使われます。
この「低線量被ばくによるがんのリスク」論文(以下、単に「リスク論文」と記述します)は、そのようなアプローチの特性を下敷きに、先行する研究のレビュー(検討・整理・(再)配置)を行いました。その結果から、この論文で指摘している重要な事項は次の3つです:
あるレベル以下の低線量被ばくによるがんリスクの存在は、検証が必要とするサンプルのサイズ(調査の対象となる被ばくされた方の人数)があまりにも巨大になるため注3、科学(疫学)における標準的かつ最も厳密なアプローチ(リスクの直接推計)によって検証することができない。しかし、科学的にみても、直接推計により検証できないことがリスクの不在を意味するわけではない。
これまで、直接推計によってがんのリスクの存在が証明された長期被ばく量の最小値は(年単位ではなく生涯で)50〜100mSvである。
2)の最低値未満の被ばく量によるがんリスクを科学的に明らかにするためには、何らかのモデル/仮説を前提として採用する必要があり、現時点では比例モデル(線形閾値無しモデル/仮説;LNT)が科学的に最も適切なモデルと考えられる。
それぞれをもう少し詳しく説明してみましょう。
1) 低線量被ばく(つまり、××mSvあるいは◯◯μSvといった単位で測られる放射線被ばくの量が相対的に少ない被ばく)によるがんのリスク評価は、疫学の研究対象の一つです。
しかし、疫学において標準的かつ最も厳密なアプローチ(リスクの直接推計とその検定注4)を採用すると、ある一定レベル以下の低線量被ばくのリスクの有無を決定することは原理的に不可能になります。しかし、「一般に」だけではなく、この問題に限定しての科学的な理解においても、リスクの直接推計によって検証できないことがリスクの無いことを(暫定的にでも)意味するわけではありません。これは、単にそのアプローチを採用することに科学として無理があることを意味します。
2) リスクの直接推計に基づいた先行する科学研究によってがんのリスクが検証された被ばくのレベルは、原爆の犠牲者・被害者が受けたような限られた短時間で被爆する場合(急性被ばくといいます)で10〜50mSv、原発事故による被ばく(環境に放出された放射性物質による被ばく)や原発作業従事者の被ばくのように長期にわたって少しずつ被ばくする場合(長期被ばくといいます)で50〜100mSvです。
福島第1原子力発電所の事故に伴い大きく懸念されるのが、後者の長期被ばくです。なお、ここでは、以下の点には十分な注意を払ってください。
(ア) 被ばく量の単位(mSvやμSvなど)は年間の被ばく量をあらわす単位(たとえば、mSV/年)でなく、長期(多くの研究で5〜10年以上、理論上は生涯)に渡り蓄積された被ばく量を表します。
(イ) これまで行われてきた長期被ばくのリスクに関する研究では、必ずしも内部被ばくの影響が明示的には考慮されておりません(データの性質により考慮できなかったのです)。
(ウ) 同じく、これまでの長期被ばくのリスクに関する研究において、厳密にリスクが証明された被ばく量の最小値は、科学的に放射線の影響を受け易いとされているグループ(お腹の赤ちゃん、赤ん坊、こどもなど)にとっての最小値では必ずしもありません。
3) 前項で、長期被ばくに関しては、少なくとも50〜100mSvの被ばく量でがんのリスクがあることが検証されたと述べました。それでは、50〜100mSv以下の被ばくにはがんのリスクがないのでしょうか。そのようなリスクを科学的(疫学的)に検討するためには、1)で述べた最も厳密なアプローチを使うことができません。
(逆に、2)で示した値は、厳密なアプローチで明らかになった疑いの余地が実質ゼロな値ともいえます)
リスクの直接推計に代わって使われる科学的なアプローチは、推定ないしは外挿といわれるアプローチです。単純化して説明しますと、影響が科学的にわかる範囲(つまり、50〜100mSv以上)の被ばくとがんリスクの関係をプロットし(とりあえず横軸に被ばく量、縦軸に発がん率をとって、グラフに点を打つことを想像してください)注5、プロットされた点を上手くつないでわからないところまで延長してやることでリスクの見積もりを行うものです(小さいですが、リスク論文にあるこちらの模式図(http://p.tl/Vvl3)を参照してください注6。横軸は被ばく量、縦軸が放射線被ばくによるがんのリスクを表します)。
データから点を上手くつなぎ、さらに延長する作業には様々な可能性があり、極論すれば好きなように線を引くことができてしまいます。しかし、それでは科学にはなりません。この作業を科学的に行うためには、検討している現象(ここでは、放射線被ばくによってがんが発生するという現象)の背後に想定されるメカニズムに基づいて、曲線の形状をモデル化(仮定)する必要があります。
残念ながら、現在(そしておそらく今後も)、科学が持ち合わせる証拠から判断して、科学的に異論がほとんどないだろうと断言できる程度の厳密さでこの曲線の形状を決めることはできません。1)で述べたことと同じ問題があるからです(つまり、厳密なアプローチで曲線の形状を決定することができないのです)。
そこで、いくつかの数値データや放射線被ばくによるがん発生のメカニズムに関する実験的および理論的研究に基づいて、現在の科学水準から最も妥当な曲線の形状はどのようなものかを推測する必要が生じます。
この形状に関連する様々な研究の成果に基づき、リスク論文は、科学的に最も妥当な曲線の形状は直線であるようだと結論しています。このような曲線の形状を採用するモデルは、専門的には閾値無し線形モデル(LNT)と呼ばれていますが、わかりやすさを優先して以下では比例モデル注7と呼ぶことにします。
すこし補足しますと、この三つの指摘のうち最初の二つについては疫学の専門家の間ではかなり高いレベルで合意がなされているはずです。そこには、データや理論の恣意的な解釈や当てはめの余地がほぼ無いからです。
一方、三つ目注8については、あるいは反論・対案を持つ専門家がいるかもしれません。ただし、その専門家が対案として持つ可能性のある別の考え方(つまり曲線形状と背後のメカニズム)に対しては、リスク論文の中でそれぞれ問題点や限界が指摘されています。したがって、これらの指摘に対する合理的な反論、ないしはそのモデルが適用される範囲の合理的な限定なしに別のモデルを主張する専門家はまずいないはずです(根拠なく対案が提出されたとすれば、その主張を少なくとも科学的主張として受け止める必要はありません)。
たとえば、代表的な対案である閾値モデルは、メカニズムとデータの両面から適用できる範囲が比例モデルよりもかなり限られていることが指摘されています注9。つまり、反論の内容とその論理、またそれが意味するところをよく検討する必要があるのです。
参考までに、原子力安全委員会がホームページに公開した資料(『低線量放射線の健康影響について』(平成23年5月26日改訂版、http://www.nsc.go.jp/info/20110526.html)に、つぎのように書かれていることを確認してください(下線は筆者による)。リスク論文とおおむね整合的なことがおわかりいただけると思います。
標記に関する原子力安全委員会の考え方について説明いたします。
(中略)
一方、「確率的影響」には、被ばくから一定の期間を経た後にある確率で、固形がん、白血病等を発症することが含まれます。がんのリスクの評価は、疫学的手法によるものが基礎となっています。広島や長崎で原子爆弾に起因する放射線を受けた方々の追跡調査の結果からは、100mSvを超える被ばく線量では被ばく量とその影響の発生率との間に比例性があると認められております。一方、100mSv以下の被ばく線量では、がんリスクが見込まれるものの、統計的な不確かさが大きく疫学的手法によってがん等の確率的影響のリスクを直接明らかに示すことはできない、とされております。このように、100mSv以下の被ばく線量による確率的影響の存在は見込まれるものの不確かさがあります。
そこでICRPは、100mSv以下の被ばく線量域を含め、線量とその影響の発生率に比例関係があるというモデルに基づいて放射線防護を行うことを推奨しています。またICRPは、このモデルに基づき、全世代を通じたがんのリスク係数を示しています。それは100mSvあたり0.0055(100mSvの被ばくは生涯のがん死亡リスクを0.55%上乗せする。)に相当します。
ー『低線量放射線の健康影響について』(平成23年5月26日改訂版)http://www.nsc.go.jp/info/20110526.html
[Retrieved 6.20.2011]
2−2.リスク論文が指摘したことの意味
「(外部被曝が)100mSV/年(≒10μSV/時)を超さなければ健康に影響を及ぼさない」といった趣旨の発言や記述をニュース等で目にし、あるいは耳にすることが多いでしょう。また、その根拠として100mSv未満の放射線被ばくの健康影響を厳密に科学的に検証した研究が存在しないことを挙げる発言もたまに目にします。
ここで紹介したリスク論文は、科学の範囲内でも、このような考えにいくつもの重大な誤りがあることを明らかにしてくれます。
もちろん、低線量被ばくの影響は短期的に現れにくいことは科学的な合意事項ですので、「直ちに影響はない」といったレトリックの意味についてここで議論するつもりはありません注10。主な問題点は以下のとおりです。
A) 100mSv程度以上の被ばくによる健康リスクを科学的に証明した調査・研究が用いる単位は、一年あたりの被ばく量を表すmSV/年ではなく、(一生涯にオーダーが近い長期に)累積された被ばく量を表すmSvです。
したがって、現状で20mSV/年の外部被ばくが見込まれる注11のであれば、そこに5年程度以上住むことを前提とすると(セシウムの半減期が約30年と長いこともあって)、既存の科学的な調査研究の結果は「健康に影響を及ぼすこと」をむしろ証明しています。
B) 100mSv(あるいは50mSv)未満の低線量被ばくのリスク(影響)が「厳密に」証明できないのは、リスクがないからではなく、「厳密」という旗印の下で使われたアプローチが適切でないためです(追加的な説明は別に行うので、関心のある方は3節をご覧ください)。
つまり、「リスクが証明できない」ことが、あらかじめわかっているアプローチをあてはめて導かれた「リスクが無いこと」の証明には、科学的な価値が全くありません。(なお、低線量被ばくのリスクに関する研究論文や調査報告では、多重比較などの言葉をつかって詳細な検定/下位検定を行うなどと書かれることがありえます。そのときには、同様の不思議なアプローチが取られている可能性もあるので、注意する必要があります。)
C) 長期被ばくに関する有力なデータの多くは原発作業従事者に関するデータです。したがって、そのデータに基づいて今回の事故の影響を考えようとしても、データが主に成人男性に関するデータであるため必然的に生じる限界があります。
子供の健康が放射線による影響を受け易いことについては(影響の受けやすさの程度については別としても)科学者間で合意があり、それを考慮しないで100mSvという数字が取り上げられてしまうと、科学的な意味で明らかに子供の健康に対するリスクを過小評価することにつながってしまいます。
D) (若干議論の余地はありますが)現状で科学的に最も妥当と考えられる比例 モデルを適用すれば、たとえば、20mSvの被ばくによるがんリスクはある程度合 理的に見積もることができます。たとえば、100mSvの被ばくをされた方の生涯の がん死確率(「絶対リスク」)がこの被ばくによって0.5%増えるのであれば、 20mSvでは「絶対リスク」が0.1%と見積もられます。
あるいは、放射線影響協会の報告書(『原子力発電施設等 放射線業務従事者 等に係る疫学的調査』(平成22年3月))から数字を借りれば、全悪性新生物に よる死亡が50〜100mSvの累積被ばく量で「相対リスク注12」は9%ほど増えていま すので、20mSvの累積被ばくではがんによる死亡の「相対リスク」の増加分は2% 近いと見積もれます注13。いずれも例として行った雑な議論ですので、科学的に適切な見積もりを実行するには注意すべき点が多数あります。しかし、比例モデルによって、見積もりが可能であることのイメージは掴めたのではないでしょうか。つまり、(それが確実に正しいことの証明となるわけではないものの)現状で最適と考えられる科学的なアプローチによって、低線量被ばくのリスクの有無が議論できるに留まらず、どの程度のリスクがあるかについても検討できるのです。
以上に挙げた問題点によって、(リスクががんに限定されており、そのこと自体健康リスクの過小評価につながりますが)低線量被ばくによるガンのリスクに関して、リスク論文が指摘したことの意味をお伝えできたのではないかと思います。
2−3.リスク論文についてまとめ
リスクの大小(また、そのリスクをどう受け止めるべきか)については議論の余地が多分にありますが、科学の議論に忠実であれば、低線量であっても長期の放射線被ばくによるがんのリスクがあることが検証されていると認めるべきだと考えられます。
さらに、そのリスクがどの程度であるかについても、(リスクの存在自体ほど強い証拠と論理によって肯定するのは難しいとはいえ)現状で最も科学的に妥当と考えられるアプローチがあり、がんのリスクに限っては、その具体的な見積もりを得ることができます。これがリスク論文の指摘することでした。
しかし、この科学的に検証されたリスクの存在、および科学的に妥当と考えられる具体的なリスクに関する数字を前にしても、個人あるいは家族、共同体、自治体、国がどのような判断をすべきかについては、科学的に議論することはできません。
したがって、現状の放射性物質の飛散状況があり、どのような観点からも福島県内の多くの地点で外部被ばくのレベルは長期的ながんリスクが存在するレベルに達していると科学が結論しても、直ちに域外へと避難しなければならないことを科学が教えてくれるわけではありません。判断には、科学的に適切な証拠が非常に大切ですが、さらに重要な別種の(社会的)議論も必要です。
3. 一定レベル以下の低線量被ばくのリスクの有無が
直接推計アプローチでは検証できない理由(以下は、乱暴な説明であることをご理解の上、気になる方だけお読みください。)
リスクの直接推計アプローチの手続きは、簡単にいえば、たとえば50mSv未満の被ばくを受けた場合にがんリスクが存在するかを確認するために、「その被ばくしたヒトの集団と、自然放射線による被ばくしか受けていないとみなせるヒトの集団をとりあげて、その違いを推計し、その推計値が意味のあるものかを統計学的に検証する」ものです。
なぜこのアプローチが低線量被ばくでは使えないかを(乱暴なやり方で)説明したいと思います。詳しくかつ正確に理解したい方は統計学の教科書にあたってください。
目の前にコインがあります。このコインには歪みがあることが疑われていて、その歪み具合は、表(オモテ)のでる確率が正常なコインよりも0.5%だけ多い程度と予想されています。つまり、50.5%が表のでる確率で、49.5%が裏のでる確率であると見込まれています。このコインを100回投げた結果を観察すれば、コインの歪みの存在を証明できるでしょうか。
仮に、歪みを確認するコインが正常なコインであると仮定しますと、100回投げて50回表がでる確率は:
100!/(50!×(100-50)!)×0.5100≒0.079589237(つまり約7.96%)
となります(これは、確率の計算に慣れてない方にとって意外に小さく感じられるかもしれません)。
一方、50.5%表が出るコインを100回投げて50回表がでる確率は:
100!/(50!×(100-50)!)×0.50550×0.49550≒0.079192265(約7.92%)
となります。上の値よりも小さいですが、二つの差はごくわずかです注14。
おおむね同じ傾向(二つの確率の差が非常に小さいという傾向)が表のでる回数が50回にある程度近いところで見られます。そのため、正常なコインとわずかに歪んだコインとの間では、100回程度投げただけでは二つの表が出る回数に、検出できる差が生じない可能性が非常に高いわけです。
低線量被ばくのがんリスクは、このようにわずかに歪んだコインの表裏のようなもので、被ばくのない状態と結果の出方には統計的に断言できる程度の大きな差がみられない可能性が高いと事前に想定されます(とはいえ、たとえば0.5%のがん死リスクの増加は、大きな人口を想像すれば軽々に無視できるものではありません)。
したがって、このような二種のコインの差を科学的に検討するためにはコインを投げる回数を増やす、すなわち、調査対象となる被ばくされた方々の数を非常に大きく増やす必要がありますが、その人数は確保できない規模に到達しています。
差の検出力をザルの目にたとえてこのことの意味を考えますと、現在は(おそらく今後とも)、実施可能な調査研究で使える最小のザルの目が5cm角であるのに対して、すくおうとする低線量被ばくのリスクは体長1mm以下の小魚であるといった状況であると想定できます注15。
このザルを使って小魚がいるかもしれない池の水をいかに念入りにさらっても小魚がかかることはまずありえませんが、大きな魚(高線量の被ばくリスク)がいれば、かかります。この結果から、池には小魚(とくに、大きな魚がかかった場合の稚魚)がいないと結論するのは、あまりにも馬鹿げた話です。残念ながら、科学とは程遠い世界の話注16だと思います。
(了)
注1:原論文について日本語への暫定訳は終えております。さらに、筆頭著者であるBrenner博士から大変なご好意により訳文およびオリジナルの図表の公開の許諾を得ておりますが、公開には出版社からの許諾も必要です。6月10日に許諾をお願いする連絡をメールでさせていただき、6月20日付で出版社から許諾のメールをいただきましたので、翻訳を公開いたします。
通常であれば、出版社側の規定にしたがって原文一ページにつき20ドル(計120ドル)および頒布一部毎に0.1ドルを支払わなければならないのですが、今回は現状にご配慮くださった出版社の寛大なお取り計らいにより、すべて無償で配布することが実現できました。ここに改めて感謝申し上げます。注2:この点についてこの重要な査読付論文が明確に反論しているといった例があれば、ご指摘いただければ幸いです。(SMCより:このサイト上部の「問い合わせ」からお寄せ下さい)
注3:リスク論文では10mSvの被ばくリスクを検証するためには500万人が必要とされています。なお、なぜそうなってしまうかについての乱暴な説明が3節にあります。
注4:リスクの直接推計の方法自体やその有意性の検定(直接推計の方法や内容に応じた推計された値を統計学的にみて意味があるかどうかを確認するテスト)のやり方にはバリエーションがあります。
注5:正確には、通常、50〜100mSvより低い被ばく量におけるがんリスクのデータもあわせて利用します。
注6:PNAS論文フルテキストにアクセスできる環境にある方は、http://p.tl/JWrFから大きな図が見られます。
注7:つまり、追加的な被ばく量と超過リスクが正比例するというモデルです。
注8:国際放射線防護委員会(ICRP)もおおよその意味ではこの考え方(LNT)に沿っています。
注9:つまり、閾値モデルが妥当でないわけではなく、特定のがんではない全般的ながんのリスクを推定するには向かないだけとも言えます。
注10:もちろん、緊急事態における避難の手続き・困難さを考慮すると、一時的であれば「直ちに影響はない」という考え方には頷ける余地がないわけではありません。
注11:注11:ちなみに、近隣の公的機関が測定した放射線量が2μSV/時であるからといって、年間の外部被ばく量が約20mSV(つまり約20mSv/年)になるわけではありません。生活パタンや被ばく対策、あるいは局所的な放射性物質の分布状況によって、実際に被ばくする放射線量は変化するからです。
注12:数字は同報告書の表3.4−1より。ちなみに、このケースのように、リスクの増加分0.5%という数字は、何も無い時のがんによる死亡の可能性がたとえば x%(ベースラインあるいは期待死亡率ともいえます)であれば、発がんリスクが x・0.5/100増えることを意味する「相対リスク」を指す場合がありますので、資料を読む際には注意が必要です。
本稿の公開後、「専門家以外を対象としたリスク情報の提供に際しては、ベースラインに影響を受ける相対リスク表記ではな く、パーセンテージを計算するときに使われる分母として当該の集団全体を使う絶対リスクで表記し、読者の混同をさけるべきである」という旨のご指摘を受けました。
筆者はこのご指摘に対して全面的に賛成であり、ご指摘を受けて本稿の修正を行いました。ここに反省するとともに、ご指摘に対して感謝させていただきます。なお、このケースでも「相対リスク」ではなく「絶対リスク」による表記を採用すべきところではありますが、補正等に関する煩雑な議論を避けるため、そのまま「相対リスク」での表記を残してしまいました。申し訳ありませんが、その点には十分ご注意ください。注13:数字を借りてはいますが、このような見積もりを適切に行うには、いくつかの前提について慎重な吟味が必要です。また、割り算ではなく、すくなくとも統計学的に直線を引く作業(回帰)を行わなければ、比例モデルの枠組みにおいても妥当なリスクの推定にはなりません。
注14:有効数字などにツッコミをいれるのはご遠慮いただきたいところであります。
注15:福島第一原子力発電所の事故によって、とくにこのまま抜本的な放射線対策の遅れが続けば、このザルの目が従来よりも細かくなることが予想されます。痛ましい、そして戦慄せざるを得ない状況であります。
注16:この点に興味をいだいた方は、ポパーの反証可能性の議論について一読されることをお勧めします。たとえば、チャルマーズ著『新版 科学論の展開―科学と呼ばれているのは何なのか?』恒星社厚生閣(1985)が入門書として取っつき易いでしょう。
※SMCでは本寄稿に関し、専門家/研究者の方からの異論・反論もお待ちしています。サイト上部の「ご質問・お問い合わせ」欄からご連絡下さい。
【ノート】
・ マスメディア、ウェブを問わず、科学の問題を社会で議論するために継続してメディアを利用して活動されているジャーナリストの方、本情報をぜひご利用下さい。
・ サイエンス・メディア・センターでは、このような情報をメールで直接お送りいたします。ご希望の方は、下記リンクからご登録ください。
(登録は手動のため、反映に時間がかかります。また、上記下線条件に鑑み、広義の「ジャーナリスト」と考えられない方は、登録をお断りすることもありますが御了承下さい。ただし、今回の緊急時に際しては、このようにサイトでも全ての情報を公開していきます)
【メディア関係者データベースへの登録】 http://smc-japan.org/?page_id=588
【記事について】
○ 私的/商業利用を問わず、記事の引用(二次利用)は自由です。ただし「ジャーナリストが社会に論を問うための情報ソース」であることを尊重してください(アフィリエイト目的の、記事丸ごとの転載などはお控え下さい)。
○ 二次利用の際にクレジットを入れて頂ける場合(任意)は、下記のいずれかの形式でお願いします:
・一般社団法人サイエンス・メディア・センター
・(社)サイエンス・メディア・センター
・(社)SMC
・SMC-Japan.org
○ この情報は適宜訂正・更新を行います。ウェブで情報を掲載・利用する場合は、読者が最新情報を確認できるようにリンクをお願いします。
【お問い合わせ先】
○この記事についての問い合わせは「御意見・お問い合わせ」のフォーム、あるいは下記連絡先からお寄せ下さい:
一般社団法人 サイエンス・メディア・センター(日本)
Tel: 03-3202-2514 Fax: 03-3202-2497
2011年8月15日月曜日
【寄稿】「低線量被ばくによるがんリスク」論文解題:調麻佐志・東工大准教授 | Science Media Centre of Japan
via smc-japan.org
登録:
コメントの投稿 (Atom)
0 件のコメント:
コメントを投稿